Holistic Human Pose Estimation with Regression Forests

نویسندگان

  • Vasileios Belagiannis
  • Christian Amann
  • Nassir Navab
  • Slobodan Ilic
چکیده

In this work, we address the problem of human pose estimation in still images by proposing a holistic model for learning the appearance of the human body from image patches. These patches, which are randomly chosen, are used for extracting features and training a regression forest. During training, a mapping between image features and human poses, defined by joint offsets, is learned; while during prediction, the body joints are estimated with an efficient mode-seeking algorithm. In comparison to other holistic approaches, we can recover body poses from occlusion or noisy data. We demonstrate the power of our method in two publicly available datasets and propose a third one. Finally, we achieve state-of-the-art results in comparison to other approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continous Head Pose Estimation using Random Regression Forests

Head pose is a rich visual cue that finds great interest in the field of human robot interaction (HRI) and for video surveillance applications. Previous attempts at solving this problem have often proposed solutions formulated in a classification setting. Furthermore, strong assumptions on illumination and scale in an occlusion-free environment have usually been made. We propose a regression so...

متن کامل

Automatic head pose estimation with Synchronized sub manifold embedding and Random Regression Forests

Head pose can indicate the eye-gaze direction and face toward which is an important part of human motion estimation and understanding. Due to physical factors of the camera, shooting environment, as well as the appearance change of humanity, the head pose estimation becomes a challenging task. Synchronization sub manifold embedding can find the internal structure of nonlinear data for nonlinear...

متن کامل

Static Pose Estimation from Depth Images using Random Regression Forests and Hough Voting

Robust and fast algorithms for estimating the pose of a human given an image would have a far reaching impact on many fields in and outside of computer vision. We address the problem using depth data that can be captured inexpensively using consumer depth cameras such as the Kinect sensor. To achieve robustness and speed on a small training dataset, we formulate the pose estimation task within ...

متن کامل

Real-Time Head Pose Estimation Using Random Regression Forests

Automatic head pose estimation is useful in human computer interaction and biometric recognition. However, it is a very challenging problem. To achieve robust for head pose estimation, a novel method based on depth images is proposed in this paper. The bilateral symmetry of face is utilized to design a discriminative integral slice feature, which is presented as a 3D vector from the geometric c...

متن کامل

3D hand pose regression with variants of decision forests

3D hand pose regression is a fundamental component in many modern human computer interaction applications such as sign language recognition, virtual object manipulation, game control, etc. This thesis focuses on the scope of 3D pose regression with a single hand from depth data. The problem has many challenges including high degrees of freedom, severe viewpoint changes, self-occlusion and senso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014